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PLASTIC BEHAVIOR OF CIRCULAR PLATES

UNDER TRANSVERSE IMPULSE LOADINGS

O F GAUSSIAN DISTRIBUTION*

By Robert G. Thomson

Langley Research Center

SUMMARY

An analytical study of the plastic response of a circular plate of uniform thickness

subjected to a normal axisymmetric impulse of Gaussian distribution is presented. The

Gaussian impulse loading is assumed initially to impart a momentum to the plate. The

plate is thereafter prescribed as free from external loads. The kinetic energy of motion

is assumed to be dissipated in plastic deformation. The radial and circumferential

strain and strain-rate distributions of the plastically deforming plate are determined as

a function of time and space from derived deflection expressions. Only the bending

action of the plate is taken into account and the plate material is assumed to behave as a

perfectly plastic-rigid continuum.

The possibility of a fracture or separation of the plate material occurring during

deformation is discussed. Maximum values of strain and strain rate are shown to occur

in the circumferential components, and a mode of failure by radial fractures is indicated.

INTRODU CTION

The impingement and fracture of the main wall of a space vehicle by meteoroids

are of major concern to the spacecraft designer. Protective devices, such as meteoroid

bumpers, have been proposed to shatter the impinging meteoroid and to lessen its pene-

trating potential. It has been shown both theoretically and experimentally (refs. 1 and 2)

that the resulting cloud of meteoroid and bumper debris passes on to the main wall of the

space vehicle as an impulsive loading having a general Gaussian distribution. A study

of the dynamic response of a plate under this impulsive type loading could well ,:_tssify

the mode or manner of fracture at failure recently observed experimentally on double

sheet models of a bumper and main wall coizfiguration. (See refs. 3 and 4.)

*The information presented herein was included in a thesis submitted in partial ful-

fillment of the requirements for the degree of Doctor of Philosophy, Virginia Polytechnic

Institute, Blacksburg, Va., 1966.



A thorough analysis of the behavior of an impulsively loaded plate should include

not only the plastic but also the elastic response of the plate material. Because of the

complex time-dependent properties of the problem, however, most analyses consider

only the rigid-plastic response of the plate and neglect its elastic behavior entirely.

This rigid-plastic assumption for plate behavior is adopted in the present paper. The

energy dissipation process then becomes one of pure plastic deformation in which a plate,

once given an initial kinetic energy of motion, dissipates energy in plastic deformation

and acquires a permanently deformed shape when the motion terminates. Energy trans-

formation due to rotary inertia and dissipation due to transverse shear displacements

are neglected.

The existing analyses of the dynamic rigid-plastic behavior of plates consider the

loading function as constant over the loaded area (refs. 5 to 9). Although this assumption

on loading simplifies the mathematical development of the problem, it greatly restricts

its application. The present analysis, therefore, considers a more general representa-

tion of the loading function. The loading is still considered to be axisymmetric with

respect to the center of the plate, but its radial distribution is given a general Gaussian

shape.

SYMBOLS

1
a-

b radius of finite circular plate

C constant of integration (see eq. (17))

2h plate thickness

kr radial curvature rate

ko

M o

circumferential curvature rate

yield-moment resultant, aoh2 ; maximum bending moment plate can sustain

M r radial bending-moment resultant

M 0 circumferential bending-moment resultant



q load distribution

qr

r,O,z

transverse shear stress resultant

radial, circumferential, and axial plate coordinates, respectively (see fig. 2)

S standard deviation

t time

t* time of cessation of all plate motion after impact

t I time at which hinge-circle radius has decreased to zero

V = _(r,t)

Vo = _(0,0)

w plate deflection in transverse direction (z-direction)

w* permanent plate deflection for t _->t*

radial and circumferential strain, respectively

oo

Dirac 5-function, __ 5(t) dt = 1
oo

mass per unit area of plate material

p(t)

o(O)

radius of hinge circle

initial position of hinge circle at t = 0

_j

er, Z0, ez

U o

stress components

principal radial, circumferential, and transverse stress, respectively

yield stress in simple tension or compression (assumed to be identical in

magnitude)



6(0 function of time (see eq. (32))

A dot over a symbol indicates partial differentiation with respect to time t.

FUNDAMENTAL CONCEPTS

General Considerations

The present analysis determines the rigid-plastic bending deformations, strains,

and strain rates experienced by a circular plate when subjected to an axisymmetric

Gaussian impulse loading. The circular plate, of radius b, is taken to be simply sup-

ported, uniform in thickness, and composed of a plate material that is incompressible,

ideally plastic (no work-hardening), and isotropic in yielding. Only the bending action of

the plate is taken into account and the elastic deformations as well as the membrane

forces are neglected. The plate material behavior is therefore considered to be per-

fectly plastic-rigid and is assumed to deform according to the Tresca yield condition and

the associated flow rule.

The structural loading on the plate is assumed to result from a momentum exchange

with an axisymmetric momentum impulse having a general radial Gaussian distribution

where S is the standard deviation of the Gaussian momen-

.£ turn distribution. (See fig. 1.) This momentum exchange

_'12 can be considered as an impulse loading such that at t = 0,

I _'r-_ a Gaussian distributionof load is instantaneously imparted

Z_ l_ _;_z _" r to the entire plate. Thereafter, the plate is considered tob be free from external loads.

Figure 1.- Momentum distribution.

Equation of Motion

Let r, 0, and z be a cylindrical coordinate system whose origin is located at

the center of the undeformed middle surface of the circular plate and whose Z-axis is

pointing vertically downward. (See fig. 2.) It follows from the symmetry of loading that

the only nonvanishing stresses are ar and a 0 and the transverse shear force Qr"

Integration of ar and a0 through the thickness of the plate leads to the moments M r

and M0.

The forces and moments acting on an element of the plate middle surface are then

as shown in figure 2. Positive directions of the bending moments and shearing forces

are shown, and all stress resultants are specified per unit length of line element of the

middle surface of the plate. Summation of the vertical forces and summation of the

moments acting on the plate result in the following equation of motion:
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where the loading q

a f ra--_(rMr) = M 0 + (p_ - q)r dr
_9

is prescribed by

q = _Voe-a2r25(t)

(1)

and where the plate is initially at rest but immediately upon impact assumes a velocity

distribution. In addition, the simply supported boundary conditions are

w(b,t) = Mr(b,t ) = 0 (2)

The stress profile through the thickness of a plate in rigid-plastic theory is differ-

ent from that postulated in the bending of an elastic plate. If the rigid-plastic plate is to

bend, each horizontal layer through the

plate thickness must be at the yield con-

dition. This assumption, for the Tresca

yield condition, creates a discontinuity

of stress at the middle surface which is

allowable within the framework of plastic-

rigid theory (ref. I0). The resulting

principal moments (employing Tresca's

yield condition) are thus written as

Mr = (rrh2 I (3)M 0 = eoh 2

where 2h is the plate thickness, and

values of z. Hence, the yield moment

in simple tension or compression.

o(j
/ r
1 r 6r dr

Qr dr_ 1

r /Jr'( I //_'_dr + arr

rl IV "-,

;
z

Figure 2. Eleil_ent of lhe circular olate with applied forces
and momenls.

(Jr

ar and _ are positive constants for positive

M o equals aoh2 , where ao is the yield stress

Strain-Displacement Relations

The customary linear strain-displacement relations for strain are retained and

particles originally on a normal to the plate middle surface are considered to remain

normal to the middle surface as the plate is bent. The rates of radial and circumfer-

ential straining for the present axisymmetric problem can then be written as



r = -z --=_2_¢Zf_r
Or 2

(4)

1 _* zf_e= -zr - (5)

where kr and k0 are the radial and circumferential curvature rates, respectively.

Conse que ntly,

Plasticity Relations

The idealized perfectly plastic-rigid response of the plate material is character-

ized by a constitutive equation. The dependence between the plastic strain-rate com-

e'i_ and the stress components aij is formulated according to the flowponents (or
incremental) theory of plasticity. (See ref. 11.) For the case of ideal plasticity, the

components }_ are expressed simply asstrain-rate
_j

•p of

eij = G _c_i---_ (i,j = 1,2,3)

where

(6)

f yield function which depends only on stress state

G scalar function depending, in general, on spatial coordinates and time; G deter-

mines magnitude of plastic strain rates

.p
For ideal plasticity the plastic strain-rate components eij are directed normal

(outward direction positive)to the yield surface, f(aij) being constant. The yield sur-
face considered in this paper is that corresponding to the criteria of Tresca. It is con-

cluded from the Tresca yield condition that yielding occurs when the maximum shear

stress reaches a certain value or, mathematically, when

al - a3 = aO

where _1, _2, and if3 are the principal stresses and _1 = _2 > _3"

condition for this problem is shown graphically in figure 3 in a Or,_O

Tresca' s yield

plane (_z = 0).



The plastic strain-rate components lie normal to the

yield surface except at the corners of the hexagon

where the normal is not defined but is bounded by

the normals to the intersecting adjacent straight

sides. The Tresca yield hexagon, therefore, not only

defines the relationship between _r and a_ but

also characterizes the flow mechanisms (or curva-

ture rates) of deformation. (See refs. 5, i0, and 12.)

For a simply supported circular plate and the

type of loading considered in this paper, the plate

cannot reach the flow limit without first becoming

plastic at the center; hence, through symmetry,

M r = M 0 = M o at r = 0. At the simply supported

edge of the plate, the moment M r must vanish, or

Me

°e, h2

J M0 /g

°o'h__ --_

__L_' / . Mr

........

Figure 3.- Tresca yield hexagon.

M r = 0 at r= b. The two plastic

regimes of Tresca's yield hexagon satisfying these boundary conditions and the equation

of motion (eq. (I)) are regimes (point) A and (line) AB (fig.3). Thus, the plate is initially

divided into two different plastic regimes; an inner central plastic regime (called

regime A) in which

M r = M0 = M o

k r =>0

1}8>0=

(7)

and a second outer annulus (called regime AB) in which

0 <=M r =<M o

M0= M o

kr = 0

ko>O=

(8)

where kr and f{_ are the radial and circumferential curvature rates defined in equa-

tions (4) and (5). Note that in the outer annulus, the restriction of zero radial curvature
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rate (eq. (8)) establishes, at most, a linear relationship in r for the velocity in that
regime. For the velocities considered, the entire plate is in a plastic condition when
deformation commences.

Deformation Modes

At the interface
(as indicated in fig. 4)
ture l_8 betweenthe

A

AB _ p_O}-

_ ,,

A

0 < t .: t1

t 1 < t' t

z

between the plastic regimes A and AB, a hinge circle is formed

because of a discontinuity in the rate of circumferential curva-

two regimes. (See ref. 5.) It will be found subsequently that this

hinge circle will have a maximum radius

at t = 0 when the kinetic energy

L AB , imparted to the plate is a maximum, and

_k_ will decrease thereafter and move

toward the center of the plate. When

the hinge circle finally shrinks to zero,

the plate motion does not cease, but the

plate continues to deform in such a man-

ner that an inverted cone is formed with

the hinge at r = O, until the velocity

becomes zero everywhere.

Certain higher order derivatives,

when passing through the hinge circle,

are found to be discontinuous according

to the plasticity theory developed for the

dynamics of plastic circular plates.

Since the deflection w(r,t) obviously must remain

Figure 4.- Mode of deformation.

(For details, see refs. 5, 8, and 13.)

continuous across a hinge circle,

(9)

where the brackets denote possible discontinuities in the enclosed quantities in passing

through the hinge circle and

velocity of the plate particles

ous for moving hinge circles.

be continuous across r = p(t)

a2w/ar 2,

is the rate of change of the hinge circle with time. The

_¢ and the slope of the plate aw/0r must remain continu-

The following continuity expressions can also be shown to

even though they are composed of members (that is,

_, and aN/0r) which may be discontinuous:

(lo)

8
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Although equations (10) and (11) are not used directly to obtain a solution for

w(r,t), they are employed as a check on the validity of the radial and circumferential

strain and strain rates derived from w(r,t).

MATHEMATICAL ANALYSIS

(11)

The analytical derivation of the deflection of the plastically deforming plate is

divided into two sections. The first section presents the solution for the motion of the

plate when the plate is divided into two distinct plasticity regimes, separated by a hinge

circle, up to the time of the disappearance of this hinge circle. The second section con-

tains the solution for the motion of the plate as it continues to deform, up to the time of

cessation of all motion. From the deflection expressions, the velocities, strains, and

strain rates can be determined and are evaluated in the appendix.

Solution With Hinge Circle of Finite Radius

Velocity determination.- For a perfectly plastic-rigid circular plate initially sub-

jected to a general Gaussian distribution of momentum, the resulting velocity distribu-

tions are as follows:

In regime A, the expression for velocity is obtained by direct integration of equa-

tion (1) with respect to time, it being noted that M r and M a are both equal to M o

(eq. (7)),

_a2r 2
= Voe (0 _-<r < p (t)) (12)

Note also from equation (12) that the curvature rates _:r and ko, in regime A, are non-

negative (eq. (7)).

In regime AB, however, the determination of the proper velocity distribution is not

as straightforward. The first condition that can be utilized is that the radial curvature

rate t_r must be zero (eq. (8)) and thus, the velocity has at most a linear dependence

in r. The velocity must be continuous across the hinge circle, and from the boundary

condition of zero displacement at the simply supported edge (eq. (2)), must have zero

velocity at the simply supported edge. The satisfaction of these conditions leads to

the following expression for the velocity distribution in regime AB:



Voe-a.2E (tll2 (p(t)<_-r _-<b) (13)

where p(t) is the radius of the hinge circle which is, as yet, undetermined.

The equation of motion (eq. (1)) is therefore not uniquely satisfied in regime AB

until pit) is determined as a function of t. In order to solve for the proper time vari-

ation of p(t), the equation of motion is utilized, together with the velocity expression

(eq. (13)) and the associated boundary conditions for regime AB

Mr(P,t ) = M o

JMr(b,t)= 0
(14)

where 0 <M r _-_Mo for p_-_r _-<b.

Equation (13) is differentiated to obtain the following expression for the

acceleration:

a2p 2 b-r (1- 2a2bp +2a2p2)p
{_= V°e- (b p)2

(15)

which is substituted into equation (1) with M 0 set equal to M o (t > 0). Integration of

equation (1) then determines an expression in Mr(r,t ). Applying the boundary conditions

on M r (eq. (14)) determines the constant of integration and leads to the following first-

order total differential equation in p(t):

I-_dt -e (1-2a2bp +2a2p 2) 1-2 b_+3 dp (16)
_Vob2 b

Equation (16), when integrated, yields (from ref. 14)

I II_t+C=PVob2 1+ _-_ - - 5(bP--) -3 e -a2p2+_3¢_- erf(ap)
(17)

The constant of integration C can be evaluated in terms of p(0), the initial loca-

tion of the hinge circle. Thus for t = 0 and pit) = p(0), C becomes

f _-_/ b_') (b_-_) 2 (bP_)l -a2p(0)2 (ab) _3vr_ erf(ap(0))
C= 1+ 6 1- - P(0) + 5 -3 e + -------_

b
(18)

10



The initial location of the hingecircle radius p(0) is determined from two

requirements: (1) that the time rates of curvature kr,k0 be nonnegative in regime A

and (2) that dp/dt (eq. (16)) be negative (since the kinetic energy imparted to the plate

is a maximum at t = 0 and decreases thereafter). Also, of course, the value deter-

mined for p(0) must he unique. The value of p(0) satisfying these requirements is

found to depend on the shape of the initial Gaussian momentum distribution. For a

Gaussian distribution that resembles a localized load (ab > V_-), it is found that the

requirement that dp/dt be negative governs the determination of p(0). Hence, solving

equation (16) for the maximum value of p(0)/b that will still yield negative values of

dp/dt results in

(ab)2 (2 < < (19)
2b

For a Gaussian distribution that resembles a more distributed load (ab < _/'2), the

governing criteria for the determination of p(0) is that the rate of curvature be non-

negative in regime A and also that the value of p(0) be unique. Thus, from equa-

tions (4) and (12) the rate of radial curvature kr can be written as

kr- _2_v- 2Voa2(1 - 2a2r2)e -a2r2 (20)
ar2

and for for to remain nonnegative at r = p(0) and for p(0) to be unique for all values

of ab, p(0)/b must be equal to

s 1 (1 ¢ ab 2) (21)
b b V_ab

The lower limit on ab (ab = 1/_) places the hinge circle at the outer edge of the plate.

For values of ab < 1/_/2, the hinge circle remains at the outer edge of the plate

since the boundary condition Mr(b,t) = 0 (from eq. (2)) prohibits regime A from encom-

passing the edge of the plate and passing beyond. Hence, for ab < 1/_/2,

p(O)= 1 (0< VC2ab< 1) (22)
b =

The lower limit on ab may only approach zero since the integral evaluation of

equation (17) is invalid when a = 0. However, solutions do exist in the neighborhood of

zero and are sufficient for practical application. The lower limit on ab (ab - 0) repre-

sents a uniformly distributed impulse over the entire plate.

11



The value of t at the time the hinge circle vanishes, or

mined from equation (17) by setting _= 0 to yield
U

12M° tI= -i+ _-

Vob2 (ab)2 C= -1+_+ -_

6

t = tl, can be deter-

+'( le-
The expression for tI is a cubic in ab and is plotted as a function of 12M°

Vob2p t1

figure 5. As is shown in figure 5, different expressions for p(0)/b are used in the

(23)

in

]2 M

otl

Vob2p

1.0

.o

.5

.4

.3

.2,

.1

ip(O) _

p(p(o) _ )

J \ b ',_ ab/

I p(O) 'I (ab} 2

\_ =--- 2

I i I

1 2 3 4 5 0 Z 8 9
I I J I ;

10 11 12 13 14 15

"_'r2ab

Figure .5.- Time interval t i for initial hinge-circle radius to decrease to zero

as a function of initial Gaussian distribution parameler ab.

three different ranges of

12M o
approaches 0% tl

PVo b2

ab. (See eqs. (19), (21), and (22).) Note that as ab

12M o

approaches 0 and as ab approaches 0, _V-_tl
u

12M o
t 1 presented in refer-

# Vo b2

approaches 1; this value corresponds to the value for

ence 6 for a uniformly distributed impulse.

Deflection.- The deflection of the plate can now be determined since the velocities

of deformation have been established. The plate, during deformation, is divided into

three distinct regions of interest as shown in figure 6.
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For elements of the plate located between the

outer edge of the plate and the initialposition of the El :El: I

hinge-circle radius (p(0)), or in region I of figure 6, the pli_---_ 0(0}

deflection expression is dependent only on the velocity b

as given for the plastic regime AB (eq. (13)) and can
z

be written as

ow(r,t) = V o

Figure 6.- Hinge circle and plasticity

regimes.

r

(p(0) _ r _ b) (24)

In region 1I of figure 6, elements of the plastic plate are first located in the plastic

regime A and then as the hinge-circle radius passes over, in the plastic regime AB. The

deflection is therefore dependent not only on the motion due to the velocity of the

regime A when the point in question was in regime A, but also after the time t(r) (when

the hinge circle passes through that point of p = r) on the deflection due to the velocity

present in regime AB at that point up to the time t.

w,r,t,: +Vo (p(t) < r < p(0)) (25)

In region III, the elements of the plate are always situated in the plastic regime A.

The deflection is therefore dependent only on the velocity present in regime A (eq. (12))

and can be written

w(r,t) = Voe-a2r2t (0 _-<r <_-p(t)) (26)

Expressing dt in terms of dp (eq. (17)) and integrating equations (24) and (25) yield

(from ref. 14)

w(r,t): Vo_V°b2(ll2Mo -b){I23--(bP-) 2

L2\ b / + 2(ab)2 2

3 1 b_e-2a2p2
2(ab)2 2

b&_le -2a20(0)2}
(p(O) _r _b) (27)

13



PV° b2_I __

_23_(r)2 3_.__ 1 _ 2_- _ + 2(ab)2 - g - _ e-2a2r

÷
3 l _le-2a2p22(ab)2 2

(p =<r _<-p(O)) (28)

where t(r) is found from equation (17).

For t(r), p/b in equation (17) is replaced by r/b, because t(r) is the time it

takes for the hinge circle to pass through the point p = r. Thus t(r), from equa-

tions (17), (18), and (23) can be written as

I- _-_(b) (b) 2 (b)l-a2r2
12M° t(r)= 1 - _+ 1+ 6 1 - r+ 5 - 3 e

PVo b2 (ab) 2 -

+ 3¢'_ erf(ar) + 12M°
(ab) _ p--_ob2 t 1 (29)

The time the hinge circle vanishes t 1 is given by equation (23) and p(0)/b is defined

over different ranges of ab by equations (19), (21), and (22).

Solution With Hinge Circle of Zero Radius

When the hinge-circle radius shrinks to zero at t = t 1 and the entire plate is in

the plastic regime AB, the previous analysis must be terminated because the accelera-

tion vanishes and the equation of motion reduces to (see (eq. (1))

_--(rMr) = M o (30)_r

or

C 3
Mr = Mo+ 7- (31)

Since Mr = M o at r = 0, C 3 is zero and Mr remains at the constant yield moment

value of M o for all radial values; this result is in contradiction to the prescribed plas-

ticity condition in regime AB (see eq. (8)) and the simply supported edge condition

(eq. (2)).

Since the entire plate is now in the plastic regime AB, except for the origin, the

radial curvature rate (eq. (4)) is zero. Integration of the radial-curvature-rate expres-

sion, while the boundary condition of zero deflection at r = b and the continuity

14



conditions on the deflection andvelocity at t = t 1 are maintained, yields the following

expression for the plate deflection:

w(r,t)=_(t) (1-b)+w(r,tl) (t >tl) (32)

where w(r,tl) is the deflection at t = tl, given by equations (27) and (26) with p set

equal to zero, and where _(t) is an arbitrary function. The plasticity condition of zero

radial-curvature rate is satisfied if d__ > 0. This condition on _b(t) is examined for
dt =

its validity once 0(t) has been determined. Note, however, that the slope of the deflec-

tion as given by equation (32) is not zero at r = 0, because of the zero radial-curvature-

rate condition.

By a procedure similar to that used in the previous section of the paper, the accel-

eration is obtained by differentiation of equation (32) and is substituted into equation (1)

with M 0 = M o. The subsequent integration of equation (1) and application of the boundary

condition s

M r = M o (r = 0)

JM r = 0 (r = b)
(33)

yield

_= - 12M° (34)
pb 2

which upon integration, by utilizing the conditions evaluated at t = t 1

¢(tl) = 0
_(tl) = Vo

(35)

becomes

_(t)- 6M°(t-tl) 2 Vo(t-tl) (36)
_b 2 +

It can be seen from equation (36) that

w(r,t) for t > t 1 can be written as

is indeed greater than or equal to zero, and

15



Vo(,w(r,t) = w(r,tl) + (1-b) ---_-(t =t 1 + -
(37)

The time t = t* at which the entire plate comes to rest can be found by differentiating

equation (37) to obtain the velocity, by equating this expression for velocity to zero, and

by solving for t*. Hence,

12M° t* = 1 + 12M-------_°t 1 (38)
PVob2 _ Vo b2

and the permanent deflection shape, denoted as w*(r,t*) for

as

w*(r,t*)= (r,tl) (1- r_ pb2V° V°2w +

t = t*, can then be written

(39)

The complete time-dependent expressions for the deflection shape of the plastically

deforming plate, beginning with the initiation of motion, continuing past the time t = t 1

(the vanishing of the hinge circle), and continuing up to the time of cessation of all plate

motion t = t* have thus been determined. The complete time-dependent strains and

strain rates of the plastically deforming plate can then be determined and are so derived

in the appendix.

RESULTS AND DISCUSSION

In the evaluation of the permanently deformed shape of the plastic plate as the

velocity drops to zero, it has been tacitly assumed that the plate remains continuous and

homogeneous. In reality, however, "separation" or "fracture" of the plate material could

occur, under certain loading conditions, if the plate experiences "critical" strain or strain

rates or combinations of these over portions of its surface. Under these conditions, of

course, the application of the analysis should be terminated. After a choice of criteria

is made, the knowledge of the complete time-dependent strain rate, strain, and velocity

histories experienced by the Gaussian impacted plate permits the analyst to determine

whether the integrity of the plate material has been maintained. In addition, a study of

the strain and strain rate distributions can indicate the manner or mode of separation or

fracture of the plate m_tterial when failure does occur. For these reasons, two sample

Gaussian impulse loadings have been considered, and the velocity; strain rate, and strain

distributions have been determined at various times after impact. Radial distributions

of the velocities, strain rates, and strains are plotted for the two sample loadings in

figures 7 to 11.
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In parts (a) and (b) of figures 7 to 11 the times chosen range between t = 0 and

t = tl, during which time interval the hinge circle has a finite radius. The specific loca-

tion of the hinge radius for the particular times chosen (-P--- = 1, 0.8, 0.6, 0.4, and 0.2)p(o)
is indicated in the figures by a circle. In parts (c) and (d) of figures 7, 9, 10, and 11 the

times chosen range between t = t 1 and t = t*. In this time interval, the hinge circle

has already shrunk to zero radius; thus, the plate is entirely within the plastic regime AB.

Parts (a) and (c) are calculated by using a value of ab of 1.0 and parts (b) and (d) are

calculated by using a value of ab of 2.0. These sample values of ab (that is, Gaussian

shape parameters) were chosen to fall within different ranges of ab for which different

expressions are valid for p(0)/b. (See fig. 5.)

Velocities

The velocities are shown plotted in figure 7. The velocity as shown in parts (a)

and (b) exhibits Gaussian character in the central region of the plate and decreases

linearly with increasing radius in the surrounding annulus. The central region is seen

to decrease progressively as time increases (p decreasing) until the entire plate is

within the plastic regime AB and the velocity is completely linear in character. The

velocity as represented by parts (c) and (d) of figure 7 remains linear, the magnitudes
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decreasing as the time increases. These velocity profiles are as expected, since the

basic plasticity assumptions made with respect to the rates of curvature only admit of

these profiles in the two plastic regimes (eqs. (12) and (13)).

Radial Strain Rate

The radial strain rates are plotted in figure 8. The radial strain rates are zero in

plastic regime AB because of the basic plasticity assumption made with regard to the

rates of curvature possible in this regime (see eqs. (4) and (8)) and indeed the radial

strain rate (as given by eqs. (A6) and (AI8)) is zero for all times. In figures 8(a) and

8(b) the radial strain rate possesses an approximate Gaussian radial distribution in the

central region of the plate (regime A) with a discontinuous decrease to zero across the

hinge circle to the surrounding annulus of regime AB. Note that the strain rate does not

vary with time but the movement of the hinge circle toward the center of the plate

decreases the central plastic region (regime A) and causes a decrease in the percentage

of the plastic plate with nonzero radial strain rate. The magnitude of the discontinuity

present at the hinge circle, however, increases with decreasing hinge radius.

Circumferential Strain Rate

The circumferential strain rates are plotted in figure 9. In parts (a) and (b) of

figure 9, the circumferential strain rates also exhibit a Gaussian radial distribution of

the central region (plastic regime A) of the plastic plate; however, a large increase in

magnitude occurs as one passes into the surrounding annulus of regime AB. The circum-

ferential strain rate in regime AB is the maximum value of strain rate experienced by

the plastically deforming plate. The circumferential strain rates in regime AB are

inversely proportional to the radius and decrease accordingly as the radius increases.

The magnitude of the discontinuity across the hinge circle is similarly seen to increase

as the radius of the hinge circle decreases. In parts (c) and (d) of figure 9, the entire

plate is contained within the plastic regime AB and the circumferential rates are shown

to decrease in magnitude with increasing time with a radial distribution again propor-

tional to the inverse of the radius.

Radial Strain

The radial strains are shown plotted in figure I0. The central region of the plastic

plate exhibits an approximate Gaussian type radial distribution of radial strain (plastic

regime A) with a discontinuous "jump" in strain developing across the moving hinge

circle in passing into the plastic regime AB. This discontinuity in radial strain at the

moving hinge circle is the jump condition noted in equation (I0) for _2w/_r2 (divided

r p(O) for p(O)= l_j__ (fig. lO(a)), but not
by -h)_ a second discontinuity develops at _= b b v_ab
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or 'fi 10 b' ThoplasticregineABalwayshaszeroradial
strain. For regime A, however, as the hinge circle moves toward the center of the plate,

this central plastic region decreases and the surrounding annulus of regime AB encom-

passes regions of the plate formerly situated in regime A. This annulus thus contains

residual strains from regime A, as well as the radial straining that occurs across the

discontinuity of the moving hinge circle as is shown in parts (a) and (b) of figure 10. As

is to be expected, the radial strains begin at zero and increase in magnitude as the time

progresses. In parts (c) and (d) of figure 10, the residual radial strains present in the

plastic regime AB (caused by radial straining in the plastic regime A and radial straining

at the discontinuity of the hinge circle) remain constant with time, for t > tl, and no

further increase in radial strain occurs because the radial straining in regime AB is

zero.

Circumferential Strain

The circumferential strains are plotted in figure 11. In parts (a) and (b) of fig-

ure 11, the circumferential strains again exhibit Gaussian radial distribution in the inner

central region (plastic regime A), a discontinuity developing in the slope of the circum-

ferential strain as one passes through the moving hinge circle into the surrounding

annulus. In the surrounding annulus, the magnitudes of the circumferential strains

increase since this region contains both residual strains developed when this part of the

plate was in the plastic regime A and further circumferential straining when this part

passes into the plastic regime AB. A second discontinuity in slope occurs when the

initial position of the hinge circle is reached if the initial position is determined from

p(0)= lJ___ (See fig. ll(a).) The circumferential strains begin at zero and increase in
b / ab"

magnitude as the time increases. In parts (c) and (d) of figure 11, the residual circum-

ferential strains developed in regimes A and AB are present (and remain constant with

respect to time) and additional circumferential straining is experienced by the plate (now

completely in regime AB) as time progresses. The circumferential strain continues to

increase in magnitude as time progresses and reaches a maximum as the impacted plate

comes to rest. (Note again that in the immediate neighborhood of r = 0, the solutions

presented are invalid.)

The increase in magnitude of the circumferential strains and strain rates as one

passes from the central region (plastic regime A) of the plate to the surrounding annulus

(plastic regime AB) could have a special significance. With the passing of time, the

hinge circle decreases in radius, as has been noted before, and the circumferential

strain rates and strains in the plasticity regime AB immediately adjacent to the hinge

circle subsequently increase in magnitude. This increase in the magnitude of the
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circumferential strain rate and strain eventually exceedsthat of their radial counterparts
as the hinge-circle radius shrinks to zero. If failure by fracture or separation does
occur during the deformation process, the magnitudesof the circumferential components
probably would be the maximum values of strain rate and strain experiencedby the plate
at failure, and fracture would occur along radial paths.

CONCLUDINGREMARKS

An exact analytical solution is presented for the plastic behavior of a circular
plate subjectedto a general radial Gaussianimpulse loading. Axial symmetry being
assumed,a small deflection bendinganalysis is developedto determine the complete
time-dependent strain and strain-rate distributions present in the plastically deforming
plate from the moment of impact (consideredto be instantaneous)to the cessation of
motion. Graphical representations of the radial andcircumferential componentsof the
strain and strain rate are presentedfor various times betweeninitial impact and
cessation.

A study of these graphical representations indicates that the maximum values of
strain rate occur in the circumferential direction andthat the radial strains exhibit a
discontinuity in crossing through the moving hinge circle which separatesthe deforming
plate into two distinct plasticity regimes. The maximum values of strain and strain rate
are also shownto bedistributed initially in annular rings aboutthe center of the plate.
These maxinmm values increase in magnitudeas time progresses, and the hinge circle
moves toward the center of the plate. The circumferential componentseventually
increase to becomethe maxinmm values in both strain and strain rate experiencedby
the plate.

A study of these strain and strain-rate distributions suggestsa pattern of fracture
of the plate material whenfailure occurs. Becausethe circumferential strains and
strain rates are higher than their radial counterparts, fractures canbe expectedto occur
along radial lines. These radial fractures may initiate the catastrophic petalling-type
failure noted experimentally on the inner wall of double-sheetmicrometeoroid protective
devices.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Station, Hampton, Va., May 22, 1967,

124-08-01-13-23.
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APPENDIX

VELOCITIES, STRAIN RATES, AND STRAINS OF

THE PLASTICALLY DEFORMING PLATE

The complete time-dependent expressions for the deflection shape of the plastically

deforming plate have been determined in the body of the paper. In this appendix, the com-

plete time-dependent velocities, strain rates, and strains are derived.

Solutions for Times Prior to Shrinking

of Hinge Circle to Zero Radius

Velocities.- The velocities are as given in equations (12) and (13) or can be derived

by differentiation of equations (24) to (26) with respect to t, t(r) being considered con-

stant with respect to time,

_¢(r,t) = Vo e-a2r2 (0 < r < p) (A1)

_¢(r,t) = Voe-a2p 2 b - r (p < r < b) (A2)
b-p

Strain rates.- The strain rates, as given by equations (4) and (5), are linear in

the maximum strain rate occurring at z = +h. Consider the maximum strain rate in

tension for a positive bending moment (z = h) (from eqs. (4) and (5)):

Z_

(A3)

_ r Or
(A4)

Differentiation of equations (A1) and (A2) with respect to r

radial strain rate

_r = 2hVoa2e-a2r2 I1- 2(ab)2(b)21

accordingly yields for the

(0 < r < p) (AS)

_r=0 (p 5r _b) (A6)
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and for the circumferential strain rate

50 = 2hVoa2e-a2r2 (0 = r =< <p) (A7)

h
e0 = _rr V°e-a2p2 1 (p =<r =<b) (A8)

1-0-
b

Strains.- The maximum strain in tension for a positive bending moment (z = h)

from equations (A3) and (A4) can be written as

e r = -h 02w(r,t) (A9)
Or 2

h aw(r,tQ (A10)
eO = - r Or

Differentiation of equations (24) to (26) with respect to r, accordingly, yields for the

radial strain

Cr(r,t) = 2ha2Voe-a2r2 I1- 2(ab)2(b)21t (0 <r =<p) (All)

(b)21 b2h PVob212Mo e_2a2r2 I1 _ 2(ab)2 rer(r,t) = 2ha2Voe-a2r2 - 2(ab) 2 t(r) +

(1+ (p _-<r < p(0)) (A12)

er(r,t ) = 0 (p(0) =<r =<b) (A13)

Note that t is the time when the hinge circle reaches the radial position r and

that t(r) is the time the hinge circle crosses the point p = r. (See eq. (29).) Simi-

larly, differentiation of equations (24) to (26) with respect to r for the circumferential

strain yields

e0(r,t ) = 2hVoa2e-a2r2 t (0 -<r _-<p) (A14)
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Voh

Co(r't) = 2hV°a2e-a2r2t(r) + b 2 r
b

-_(r)2 3 1 bl 1
+ e-2a2r2

2(ab)2 2

3 1 b_e-2a2p22(ab)2 2

(p < r _-<p(0)) (AI5)

_ Voh

e0(r't) b 2 r
b

12M o 2(ab)2 2

O)_2

\ b / + 2(ab)2
(p(0) _-<r _<-b) (A16)

Solutions for Times After Disappearance of Hinge Circle

The velocities, strain rates, and strains for t I < t __5-t* can be obtained by the

use of equation (37).

Velocities.- Differentiation of equation (37) with respect to t yields

fl2M° 't_¢(r,t)=Vo(b-r)LP--_ob2k 1-t) +

Strain rates.- The maximum strain rates in tension as found from equations (A3)

and (A4), by differentiation with respect to r of equation (37), become

(0 _ r _ b) (A17)

er = 0 (0 _ r _ b) (A18)

hV o rI2M o 11
(0 < r _-<b) (A19)

Strains.- The maximum strains in tension for a positive bending moment (z = h)

are found from equations (A9) and (A10) by the proper differentiation of equation (37)

with respect to r, and can be written as follows:
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_r(r,t)

hVoa2t I

APPENDIX

-2e-a2r211_ 2(ab)2(b)_ttl_
e-2a2r2 Vopb 2 /_

(ab) 2 12Mot 1

r
2(ab) 2

(0 =<r < p(0)) (A20)

_r(r,t)

hVoa2t 1

-0 (p(0) < r _-<b) (A21)

eO(r,t)

hVoa2t 1

__2e-a2r 2 t(r) 1 Vo b2 jr_ 3 1 F 3

t I + (ab)2 br 12M°tl _(ab)2 - 2- L2(ab)2

+ (abe2 .Vob2

1 + - e-2a2r
2 2\b/

(0 < r < p(0)) (A22)

_0 (r't) _ 1 t_Vo b2 jr_ 3 1 [-3(p(O)/2 3

r 12Mot I _(ab)2 2 L2\ b / + 2(ab)2hVoa2t I (ab) 2

i r _ tl + t+ b2
(p(0) =<r _<-b) (A23)

r 0, equations (A8), (A15), (A16), (A19), (A22)Note that in the neighborhood of _ =

and (A23) are invalid. Since the principal rate of radial curvature is zero in regime AB

(eq. (8)), a discontinuity in slope exists at r = 0.

The discontinuities in the second derivatives °2w aqe and _ which appear as
ar 2' 0r'

one crosses from one side of the moving circle to the other can be shown to satisfy the

discontinuity relationships (eqs. (10) and (11)). The velocity remains continuous, as was

assumed initially (see eqs. (12) and (13)), and so does the radial slope 0w/0r (see

eqs. (A10), (A14), and (A15)) in passing through the hinge circle. The deflection w, of

course, also remains continuous. (See eqs. (26) and (28).) The discontinuity in _2w/_r 2

( r b_)is given by the second term in equation (A12) divided by -h and evaluated at _ =
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which is also the negative of the discontinuity in a@/ar divided by dp/dt (eq. (16)).

The discontinuity in a@/ar is found from the difference between equations (A7) and (A8)

r P- divided by -h/r; this difference, according to equation (11), equals the neg-when b = b
ative of the discontinuity in the acceleration divided by dp/dt. This result can be veri-

fied with equations (15) and (16).
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